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THE ΛCDM MODEL
Explain observations with a few free parameters:
H0(100h km/Mpc), h(0.7) Supernovae IA, CMB,…
⌦mh2(0.12),⌦bh

2(0.022) CMB, BAO,…
Supernovae IA,…⌦⇤(0.73)

ns(0.96) CMB, BAO,…
�8(0.8) CMB, Weak Lensing,…

Weak Lensing???

… …

w(�1???)



WEAK LENSING 
FUNDAMENTALS



THE WEAK LENSING EFFECT
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WL OBSERVABLES
• Observations measure angles 
• Light ray observed at    was originated at   
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•   is the apparent source magnification 

•   has to do with the apparent source ellipticity  

• Possible sources: galaxies, CMB
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SOLUTION TO THE WL EQUATIONS
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THE BORN APPROXIMATION
Lensing potential    is small, express          at     � ���,A O(�)
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Convergence is the integrated density contrast along the line of sight!
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E AND B MODES
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WHEN IS POST-BORN 
IMPORTANT?

• WL observables are dominated by O(δ)

• CMB Lensing bi-spectrum (Pratten, Lewis 2016)

• Galaxy/CMB lensing: where does convergence NG 
come from? δ NG, post-Born, work in progress…



WL IMAGE ANALYSIS



Convergence field is Non-Gaussian!

GAUSSIAN

REAL



QUADRATIC STATISTICS

⇠(⇥⇥⇥) = h(✓✓✓)(✓✓✓ +⇥⇥⇥)i
Two-Point correlation function

h̃(`̀̀)̃(`̀̀0)i = (2⇡)2�D(`̀̀ + `̀̀0)P(`)

Angular Power Spectrum

NG: some information is missing!!



HIGHER ORDER STATISTICS

• N-point correlation functions

• Peak (local maxima) counts

• Minkowski Functionals (topology)



PEAK COUNTS

In the Gaussian case the peak histograms are 
entirely determined by quadratic statistics
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MINKOWSKI FUNCTIONALS

V0(T ) ! Area statistic
V1(T ) ! Perimeter statistic
V2(T ) ! Genus statistic

THRESHOLD KAPPA MAP



Vk(⌫) = Ak
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Higher order correlations!



AP et. al. , arXiv:1309.4460

1 arcmin smoothing
5 arcmin smoothing
15 arcmin smoothing

noiseless

noise



LSST FORECAST



ARE NG STATISTICS USEFUL?

• Peaks, MFs = Contributions from higher-than-
quadratic correlation functions

• No available analytical tools for studying wCDM 
constraining power with NG statistics

• Pixel-level numerical simulations needed!



WL NUMERICAL 
SIMULATIONS



LENSING POTENTIAL 
SIMULATIONS

• N-body simulations using public code Gadget-2 (Springel 2005)

• Galaxy lensing: 

• CMB lensing: 

• Measure density contrast with gridding (         surface pixels)

• Solve Poisson equation               via FFT

• Explore wCDM parameter space to build emulators

(Np, Lb) = (5123, 240Mpc/h)

(Np, Lb) = (10243, 500Mpc/h)

40962

r2� = �



DENSITY POTENTIAL



RAY-TRACING
Multi-lens-plane algorithm (Jain, Seljak, White 1999), (Hilbert et. al. 2009) 
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Linear algorithm



(AP, arXiv:1606.01903 )

RAY TRACING EXAMPLE



RECYCLING OF 3D BOXES
• Construct pseudo-independent realizations of 2D lensing potential

• Slice each 3D snapshot in 9 planes (3 slices per axis x,y,z)

• For each lens k, choose a random slice

• Periodically shift the slice along the axes (randomly)

•  Place the slice on the line of sight and compute deflections/Jacobians

• Repeat for the remaining lenses

• Allows to generate multiple pseudo-random realizations of the same FOV using 
a single 3D box!



BOX RECYCLING

AP, Haiman, May, arXiv:1601.06792

O(10^4) independent 2D 

realizations for one 240Mpc/h 

box



FORWARD MODELING



BORN APPROXIMATION 
VALIDITY
Work in progress…

Effect on parameter constraints???

LSST, Euclid???



Important differences on high sigma peaks???



GALAXY LENSING 
CONSTRAINTS



CFHT LENS: PS + PEAKS
J. Liu, AP, et. al., arXiv:1412.0757v3 



CFHT LENS: PS + MF + 
MOMENTS

AP, J.Liu, et. al., arXiv:1503.06214



CMB LENSING CONSTRAINTS



J.Liu,J.C.Hill, 
B.Sherwin, AP, 

V.Bohm, Z.Haiman
arXiv: 1608.03169

• 30 sigma (PDF), 15 sigma (peak counts) contributions from 
non-linear LSS to CMB lensing signal

• PS more constraining due to shape information
• NG statistics helpful in breaking degeneracies, when 

combined with PS
• Moments + MF: work in progress…



WL REQUIREMENTS FOR 
FUTURE SURVEYS



PARAMETER CONSTRAINT 
DEGRADATION

AP, Haiman, May, arXiv:1601.06792

45 BINS

7 BINS



LESSONS LEARNED
• Trade-off: high dimensional features=more information, but estimates scatter 

increases!

• Keep dimensionality low while retaining cosmological information 
(dimensionality reduction problem)

• Relevant for future surveys (LSST) which use tomographic redshift 
information! 

• Possible solution: linear PCA (investigated), non-linear techniques (LLE, work 
in progress…) 

• Possible solution: shrinkage covariance estimation (Pope, Szapudi, 2007) 



SUMMARY



• WL observables are non-Gaussian distributed (δ 
NG + Post-Born)

• NG statistics (peaks, moments, MF) can 
complement the PS when analyzing WL data 
(tighter constraints + break degeneracies)

• Numerical simulations and efficient algorithms 
needed for NG forward modeling (emulators)

• Dimensionality reduction is a very relevant problem 
nowadays!



FUTURE PROSPECTS

• Study importance of post-Born effects to NG 
statistics (trade off simulation efficiency/accuracy) 

• Develop new, physics-oriented dimensionality 
reduction techniques to get the most out of data

• Address WL systematics (photo-z, intrinsic galaxy 
alignments, baryon effects)



(Questions)

Thank you for your attention!



CFHT LENS: ORIGIN OF PEAKS
Use CHFT catalog stellar mass info to infer halo masses  (Liu, Haiman, 

arXiv: 1606.01318)

• High peaks: single halo, 
10^15 Msun

• Low peaks: 8-10 small 
halos 10^13 Msun, 
offset from the line of 
sight



COVARIANCE MATRIX 
TECHNOLOGY

If the distribution of feature realizations is Normal: 
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hĈff i = Cff h ̂i =
✓

Nr � 1

Nr �Nb � 2

◆
 



PARAMETER CONSTRAINTS: 
REVIEW

•    image features           parameter estimates 

• Forward model       (simulations, analytical, 
emulators)

•           feature covariance matrix       (simulations!)

• Normal data likelihood, flat parameter priors
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PARAMETER ERROR 
DEGRADATION

Error from simulations: 
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Real scatter of estimates:
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Grows with feature dimensionality!!!

Taylor, Joachimi, arXiv:1402.6983


